Networks of Heterogeneous Expectations in an Asset Pricing Market

Date: 2015
By: Makarewicz, T.A. (University of Amsterdam)
The paper studies the e ect of information networks on learning to forecast in an asset pricing market. Financial traders have heterogeneous price expectations, are influenced by friends and seem to be prone to herding. However, in laboratory experiments subjects use contrarian strategies. Theoretical literature on learning in networks is scarce and cannot explain this conundrum (Panchenko et al., 2013). The paper follows Anufriev et al. (2014) and investigates an agent-based model, in which agents forecast price with a simple general heuristic: adaptive and trend extrapolation expectations, with an additional term of (dis-)trust towards their friends’ mood. Agents independently use Genetic Algorithms to optimize the parameters of the heuristic. The paper considers friendship networks of symmetric (regular lattice, fully connected) and asymmetric architecture (random, rewired, star). The main finding is that the agents learn contrarian strategies, which amplifies market turn-overs and hence price oscillations. Nevertheless, agents learn similar behavior and their forecasts remain well coordinated. The model therefore o ers a natural interpretation for the di erence between the experimental stylized facts and market surveys.


在下方填入你的資料或按右方圖示以社群網站登入: Logo

您的留言將使用 帳號。 登出 / 變更 )

Twitter picture

您的留言將使用 Twitter 帳號。 登出 / 變更 )


您的留言將使用 Facebook 帳號。 登出 / 變更 )

Google+ photo

您的留言將使用 Google+ 帳號。 登出 / 變更 )

連結到 %s

%d 位部落客按了讚: